
Journal of Parallel and Distributed Computing 60, 1223�1237 (2000)

Java Class Broker��A Seamless Bridge from
Local to Distributed Programming

Zvi Har'El

Department of Mathematics, Technion��Israel Institute of Technology, Haifa 32000, Israel
E-mail: rl�math.technion.ac.il

and

Zvi Rosberg

Radware Ltd., Atidim Technological Park, Building 1, Tel-Aviv 61131, Israel
E-mail: ZviRo�radware.com

Received November 15, 1999; revised March 10, 2000; accepted March 23, 2000

Distributed object programming is significantly more complex than program-
ming a local host and requires highly skilled developers. Current distributed
middleware for distributed programming is hard to use mainly because its
programming model and runtime support are quite different from those of
local programming. For instance, the local reference and the remote reference
to the same object are of different types and therefore are not assignable to
the same set of references. Hence, a remote reference cannot always replace
a local reference as a parameter in a method invocation. Furthermore, a local
object cannot be referenced remotely, unless it has been first converted into
a remote object. Another distributed programming obstacle with current
middleware is that access to classes and resources residing across the distri-
buted environment is not as natural and transparent as with local programming,
where all resources are in the same classpath. The Java language introduces
a new scope where distributed object programming can become as easy and
simple as local programming. In this paper we identify the main distinctions
between local and distributed Java programs and present new middleware
which achieves this goal. The proposed middleware converts any Java-
enabled host into a Java peer, which can share its classes and object instances
and interact with other Java peers in a manner which almost reflects a single
system image to the user. � 2000 Academic Press

1. INTRODUCTION AND PRELIMINARIES

Distributed object programming differs from local object programming in its
syntax, semantics, deployment, and runtime support. As a result, even with current

doi:10.1006�jpdc.2000.1651, available online at http:��www.idealibrary.com on

1223 0743-7315�00 �35.00
Copyright � 2000 by Academic Press

All rights of reproduction in any form reserved.

frameworks, distributed object programming is significantly more complex than
local programming. For instance, the local reference and the remote reference to the
same object are of different types and therefore are not assignable to the same set
of references. Hence, a remote reference cannot always replace a local reference as
a parameter in a method invocation. Furthermore, a local object cannot be referenced
remotely, unless it has been first converted into a remote object. Another distributed
programming obstacle with current middleware is that access to classes and resources
residing across the distributed environment is not as natural and transparent as
with local programming, where all resources are in the same classpath. The wide-
spread Java language [JLS96] introduces a new scope where distributed object
programming can be greatly simplified. In this paper we present a new pure and
light framework which exploits Java's reflection and class loading to make distri-
buted programming as easy as local programming. The proposed framework
converts any Java-enabled host into a Java peer, which can share its classes and
object instances and interacts with other Java peers in a manner which almost
reflects a single system image (SSI) [AFT99]. Throughout this paper we explain
how close to an SSI our new framework is.

To be definite we confine ourselves to Java [JLS96] and its class libraries
[JCL98] and begin with a definition of local and distributed programs. Then we
proceed by identifying nine major distinctions between local and distributed
programs. Related projects are discussed at the end of this section. The new frame-
work, referred to as ClassBroker for Java, is presented in Section 2, and its core
features are explained in Section 3. The project status and our implementation
experience are given in Section 4.

1.1. Local and Distributed Programs

A program is a collection of objects and execution threads. A local program is a
program which is executed in a single Java virtual machine (JVM), whereas a
distributed program is a program which is executed in multiple JVMs.

As Java objects are accessed only by reference, we use the two following key
notions to distinguish between local and distributed programs. A local reference
to a Java object is a pointer to a (master) object in the current JVM, which is
implemented by the JVM (see [JLS96, Sect. 4.3.1]). Note that a local reference is
unique; i.e., if obj1 and obj2 reference the same object, then (obj1==obj2) returns
true. Furthermore, in local method calls, parameters and return values are passed
only by reference.

A global reference to a Java object is a pure Java object which points to its
master object, regardless of the master object location. Invoking the master object
methods via its global reference is referred to as making remote method calls. There
are various ways to pass parameters and return values in remote calls. We confine
ourselves to Java's remote method invocation (RMI) scheme [RMI], where objects
are passed and returned only by copy. Observe, however, that for all referencing
practice, passing a global reference by copy is similar to passing its master object
by reference. The reference type, though, is different. Note also that the RMI
scheme requires that the parameters and return values of remote calls be serializable

1224 HAR'EL AND ROSBERG

(see [JCL98, p. 1508]). Roughly speaking, a serializable object is an object which
can be converted into a byte stream and be reconstructed back into a copy of the
object. A crucial property of a serializable Java object is that the first nonserializable
class in the object class hierarchy must have a constructor which accepts no
parameters; otherwise an InvalidClassException is raised during deserialization.

1.2. Distinctions between Local and Distributed Programs

The distinctions between local and distributed programs may depend on the
underlying distributed program framework. Some frameworks may hide some of
the distinctions while others may add new ones. To be concrete, we take Java's
RMI framework [RMI] as the frame of reference to specify the distinctions.

Global References. The predominant distinction is that a distributed program
contains global references besides the intraJVM references of a local program.

Field Referencing. The second distinction is that an object field f can be referenced
by the expression obj.f if obj is a local reference, but not if obj is a global reference.
This holds true for RMI, as well as for other frameworks which do not recompile
the application or modify the JVM.

Class Instantiation. The third distinction is the syntax by which an object is
instantiated. A local instantiation of MyClass is done with the statement MyClass cl
=newMyClass(...). A remote instantiation of MyClass must be done through a
special remote method call.

Callback Thread Context. The fourth distinction is the way the thread context is
preserved in recursive callbacks. A recursive callback is a call obj1.foo(...) made from
obj2, which subsequently follows a call obj2.moo(...) made from obj1, before the
latter returns. If obj1 and obj2 are local references, then method foo(...) is executed
by the same thread as method moo(...). If the references are global, then in RMI
(and in any other framework we are aware of), they are executed in different
threads. Observe that if obj1 and obj2 are global references and foo(...) and moo(...)
are synchronized methods, then a deadlock will occur.

Locking Enforcement. The fifth distinction is the locking mechanism. When a
lock is acquired by a JVM thread, all the threads in that JVM follow the local lock-
ing policy. This policy is not enforced on the program threads which are executed
in other JVMs. To obtain a global locking policy for a distributed program, the
framework must be enriched with new lock types. Note that without global locks,
distributed programs may be deadlocked in certain scenarios. For example, assume
two interacting JVMs where a mutual exclusion lock is acquired in each one of
them. Then, when a remote call is made from each one to the other, requesting the
locks again, the deadlock will occur.

Class Loading. Class and resource loading is the sixth distinction. A JVM has a
system class loader which loads classes and resources from the system classpath. In
addition, local programs can define one or more class loaders which can load
classes from other locations. When a class object is first referenced from an object,

1225JAVA CLASS BROKER

say obj, the referenced class object is loaded by the class loader which has loaded
the class object of obj. A class loader recognizes only the classes which it loads. In a
local call, the parameter classes, which are resolved by the caller, are necessarily
known by the called object��similarly with return value classes. In a remote call, this
may not be true as the two JVMs use different class loaders. Resources, such as images
and files which are used by a parameter which is passed in a remote call, may also not
be available in the receiving JVM. This situation would not happen in local calls.

Reference Assignment. The seventh distinction is between the local and global
reference types. A global reference is implemented by an object and assumes its
type, which is different from its master object type. Thus, it may not be assignable
to the types to which its master object is assignable. In RMI, and in most other
frameworks, the global reference object implements one or more interfaces which its
master object implements. Hence, it is assignable to those interfaces, but not to the
master object type. As a result, passing by reference parameters (and return values)
in remote calls may result in class cast exceptions.

Exception Handling. The eighth distinction is exception handling. As exceptions
in remote calls may occur in the remote JVM; they do not percolate up automati-
cally in the method call hierarchy all the way to the JVM which has made the
remote call. Furthermore, the stack trace data (which is stored in a native data
structure) is not passed to the calling JVM.

Garbage Collection. The ninth distinction is garbage collection. In a local
program an object is unreachable if it is no longer referenced from any reachable
local object. In a distributed program, an object may have global references from
other JVMs, and therefore still being reachable in a distributed program context.
This requires us to extend the local native garbage collection mechanism to a distri-
buted one. A closely related distinction is the behavior of system exit. In a local
program it terminates the application and cleans all its resources. In a distributed
program it terminates only the JVM where the system exit is called.

1.3. A Portable and Seamless Framework with Polymorphic Global References

We believe that a Java distributed framework should be portable. That is, it
should be made available to and should connect any arbitrary set of JVMs, and it
should run applications without recompilation. Such portability is particularly
important if Web browsers are part of the JVM network. A distributed JVM which
transparently distributes local programs, on the other hand, is not portable in that
sense. Its objective, however, is different from that of a portable distributed frame-
work, i.e., to accelerate program execution. In a portable framework, arbitrary
objects and threads which are placed in separate JVMs can interact with each
other. Note also that parallelism and distribution in a distributed JVM are limited
to the underlying cluster, whereas in a portable framework, it is unlimited. Note
also that permitting recompilation is not aligned with a truly portable framework,
although it can eliminate some distinctions between local and distributed programs.
If recompilation is done statically, then classes which have not been recompiled
cannot be used during runtime. These may include standard class libraries and

1226 HAR'EL AND ROSBERG

classes which are generated on-the-fly. If recompilation is done during class loading,
then it requires a special purpose class loader, whose setting is restricted by the
security manager.

A seamless framework is another useful requirement��that is, a framework in
which any class and resource in the distributed domain is transparently accessible
from anywhere in the distributed program. In particular, any class can be instan-
tiated anywhere and from everywhere, and its methods can be invoked remotely.
Observe that when parameters are passed by reference in remote invocations
(without ``remote enabling'' the called object), a global reference must be assignable
to its master object type. We refer to this property as polymorphic global references.

Seamless and reference polymorphism are essential for collaborative computing
with existing class libraries and for automatic program partitioning and load
balancing��for the former, because it makes distributed programming possible to
ordinary developers, and for the latter, because it facilitates the algorithms.

1.4. Related Frameworks

The basic Java framework for distributed programming is RMI [RMI], which is
part of the Java class library. As such it may serve as a frame of reference to other
frameworks. RMI remote objects must be ``remote-enabled,'' a procedure which
includes a remote interface definition, pregeneration and placement of stub (Java 1
and 2) and skeleton (Java 1 only) classes, and special code segments to export
remote objects. An RMI stub is used as a remote reference to its master object
whose type is in a different class hierarchy, and therefore not assignable to its
master object type. It is a plain proxy; namely, it just delegates the method calls to
its master object. Parameters and return values (including stubs) are passed by
copy using Java's serialization. Runtime loading of stubs, skeletons, method
parameters, and return value classes can be done only from a prespecified Web
server codebase. Images and files, or other classes, cannot be loaded by the RMI
runtime. With RMI, remote objects are created and exported only in the current
JVM, and their remote references are obtained from a different JVM by a naming
service.

Another framework which is supported in the Java class library is IDL, the Java
language interface to CORBA. As a comprehensive multilingual standard for most
of the distributed services, CORBA presents a quite complex framework which is
far from being close to a single system image.

Java�� [CKV98] is a pure Java framework whose objective is similar to ours.
With Java��, each remote object owns its execution thread, and parameters and
return values are passed by reference (except for primitives, final classes, and
objects which may throw exceptions) using future objects (see definition there). The
future objects technique may inflict a significant performance penalty in light to
medium platforms and it prevents proper exception handling. Among the distinc-
tions above which are not addressed by Java�� are callback thread context, locking
enforcement, class loading, exception handling, and garbage collection. Other
differences between our framework and Java�� are the following. The transport layer
of Java�� is above Java's RMI, whereas ours is proprietary and is built to address

1227JAVA CLASS BROKER

the callback thread context distinction, to optimize performance, and to fully control
the socket creation. The latter makes it easy to use secure sockets and reroute messages.
Another difference is that object creation syntax in Java�� does not enable to resolve
an ambiguous constructor upon remote creation of an object.

A commercial framework for distributed programs which generates remote
references on-the-fly is Voyager [Vo]. Unlike our framework, Voyager does not
address the distinctions callback thread context, reference assignment, and excep-
tion handling and only partially address the distinction class loading.

JavaParty [PhZe97] is another framework for parallel distributed computing
with Java. The main difference between JavaParty and our framework is that
JavaParty uses a Remote modifier which is not part of the Java language. Conse-
quently, JavaParty is not portable and seamless since the new modifier requires a
specific compiler and a specific distributed JVM. As in Java��, JavaParty's transport
layer is also built over RMI, whose shortcomings are expressed by the authors.

Another parallel distributed computing project is Do! [LaPa97], which adds new
classes to support parallel programming semantics. Do! uses a preprocessor to
transform a parallel program into a distributed program by mapping objects to
processors and adding remote creation commands. Do! uses a standard JVM and
RMI to distribute the processing over a TCP�IP network.

In [KBW], a different design and implementation which extend Java with
parallel constructs and do not require modification to Java compilers and JVMs are
used. In this framework, remote objects are created through their predefined proxy
classes, which are generated offline by a special compiler. The constructors and the
methods of remote classes in [KBW] accept only objects of a special type, Message,
and pass them only by copy. Moreover, remote methods are executed asynchronously,
and cannot return a value. Again, distribution and remote method invocation are
built on top of RMI, and to run a parallel application over a network, a native
interpretability framework (Converse) is needed.

A recent interesting distributed JVM implementation over a cluster is the cJVM
project reported in [AFT99]. Two other distributed JVM projects which are
reported in the literature are Java�DSM [YuCo97] and Hyperion [MMH98]. The
objective of the distributed JVMs is to execute unaltered pure Java applications
(only) more efficiently than in a single host. The differences between a distributed
JVM and a portable framework as ours is explained in Section 1.3 above.

2. THE CLASS BROKER FOR JAVA

We motivate and explain our ClassBroker programming model by considering
the following fictitious but illustrative distributed concert example. Maestro M.
from host Mland wishes to orchestrate an international concert to be broadcast
from host Bland, in which the performing orchestras, leading voices, and choruses
will be switched during the performance upon his scepter command. The performers
are all located throughout several MusicCenters.

The classes which implement the concert are already defined and specified as
follows. The Concert, Orchestra, and Chorus classes have all public constructors
and methods:

1228 HAR'EL AND ROSBERG

public class Concert [
public Concert(Orchestra orch, LeadingVoice lv, Chorus cho) [...]
public void start() [...]
public void stop() [...]
public void switch(Orchestra orch, LeadingVoice lv, Chorus cho) [...]

]
public class Orchestra [

public Orchestra(Instrument piano,... Instrument violin) [...]
]
public class Chorus [

public Chorus(Voice tenor,... Voice bass) [...]
]

The leading voices, however, as expected, have private constructors and can be
instantiated only through their private managers, whose constructors, on the other
hand, are public. The opera singers and their private managers, e.g., are defined by
the following pair of classes:

class PrimaDona implements LeadingVoice [
private PrimaDona (String name) [....]
public boolean pleaseDo (Request req) [

return false;
]

]
public class PrivateManager [

public PrivateManager (String name, Long commission) [...]
public PrimaDona getPrimaDona(Double dollars) [....]

]

The Maestro local application (where all classes, objects, and threads are in the
same JVM) is given by

public class Maestro [

public static main(String args[]) [

LeadingVoice maria=

(new PrivateManager (`̀ Maria''), 10000)).getPrimaDona(100000);

Concert con=Concert(new Orchestra(...), maria, new Chorus(...));

con.start();

sleep(5000);

LeadingVoice faverotti =

(new PrivateManager (`̀ Luciano''), 20000)) .getPrimaDona(200000);

con.switch(null, faverotti, null);

....

]

]

Since performers cannot be cloned and the Maestro wants to conduct the distri-
buted concert from its host only, a distributed concert would not be possible without
the support of the following framework.

1229JAVA CLASS BROKER

2.1. Facilitating a Seamless and Polymorphic Framework with Smart Global
References

To address the restrictions imposed by the performers and the maestro, the
following devices are needed:

1. RemoteCreator: A factory to create objects in remote hosts. The returned
global references should be assignable to their master objects' type, e.g., an API
to create from Mland a Concert instance in Bland, as well as PrivateManager,
Orchestra, and Chorus instances in any other host.

2. TypeTranslator: A mechanism to transparently translate a global reference
into a local one, and vice versa. For example, give that g�pm is a global reference
to a remote PrivateManager object, g�pm.getPrimaDona(...) should return a global
reference to a PrimaDona object, rather than a local one. Furthermore, as with the
RemoteCreator, the global reference should also be assignable to PrimaDona.

Observe that a RemoteCreator is not sufficient to get a global reference to a
PrimaDona instance, since the latter has a private constructor. By adding Type-
Translator, this can be resolved as follows. First, a remote instance of PrivateManager
is created by using the following APIs:

�� Get a Broker instance to the LeadingVoice host

ClassBroker cb=ClassBroker.getBroker(....);

�� Create a remote instance that returns a global reference

�� which is assignable to PrivateManager

PrivateManager g�pm=(PrivateManager) cb.create (`̀ PrivateManager'', params);

The first call gets a factory instance to a specified remote host, and the second
call uses its ``remote-create'' method to get a global reference, g�pm, to a Private-
Manager instance which is assignable to a PrivateManager type. Now, with
TypeTranslator, a global reference to a PrimaDona is obtained by g�pm.getPrima-
Dona(...). The type translation is done by our smart global reference. This transla-
tion role is built into it upon its creation. Without such type translation, g�pm.get-
PrimaDona(...) would return a clone of PrimaDona and not the ``real thing.'' A
simple way to build intelligence into the g�pm global reference is to replace its
creation call

PrivateManager g�pm=(PrivateManager) cb.create(`̀ PrivateManager'', params);

with a call

PrivateManager g�pm=(PrivateManager) cb.create(`̀ PrivateManager'',

params, `̀ PrivateManagerReplacer'');

Here, the PrivateManagerReplacer is an interface which specifies the type transla-
tion rules when the methods of g�pm are invoked; e.g., replace the return value
type of getPrimaDona(...) with a global reference which is assignable to Leading-
Voice. The PrivateManagerReplacer interface could also be used to specify parameter

1230 HAR'EL AND ROSBERG

type translation. With the RemoteCreator and Reference Translator devices, the
local Maestro program can be converted into a distributed one, without changing
any code in the other hosts, as follows:

Observe that in the distributed program above, separate ClassBroker instances
are used for different remote hosts. In addition, in Step 6, one of the ClassBroker
instances is used to get a global reference which is assignable to Chorus, for an
existing Chorus object. This API is necessary when a global reference to a local
object should be passed, rather than a copy of it.

To summarize, after the initialization of ClassBroker objects, our portable,
seamless, and polymorphic framework provides APIs such as ClassBroker.create(...)
and ClassBroker.getGlobalReference(...), where the exact locations of the master
objects, classes, and resources are transparent. Moreover, the classes may reside at
any host participating in the distributed program, that is, to provide a single system
image. A portable implementation as specified above cannot achieve a complete
SSI, but can come very close to it. In the next section we describe and discuss how
this is done with ClassBroker for Java.

3. CLASS BROKER CORE FEATURES

In this section we describe the core features of our ClassBroker framework
which narrow the distinctions between local and distributed programs. Since we

1231JAVA CLASS BROKER

require a portable solution, all services must be implemented with pure Java
classes.

3.1. Smart Global References

Since a standard JVM does not support global references we implement them
with proxy classes. To resemble local references we require that they be implicit,
unique, and symmetric. By implicit we mean that they should be created ``on-the-
fly'' and ``under-the-cover'' as implied from the API context (e.g., upon a ``remote-
create''). By unique we mean that if g�obj1 and g�obj2 are two global references to
the same object, then the Java expression (g�obj1== g�ob2) returns true. By
symmetric we mean that they preserve the required symmetry property of equality.
Uniqueness not only keeps one reference object, but also preserves local JVM
behavior of the ``=='' operator. The latter property is motivated by the following
common user programming style.

Let g�el be a global reference to an EventListener object instance in JVM1 which
has been registered to a remote EventGenerator in JVM2 using the remote call
addListener(g�el). A common way to manage listeners is to keep them in some data
structure. When a removeListener(g�el) is called later, a while loop (g�el==
listener) over all listener objects is performed. (According to [JLS96], a reference
is unique; thus using the ``=='' operator rather than gel.equals(listener) is a natural
choice.) If global reference uniqueness is not preserved, then removeListener(g�el)
will not remove the listener which has been registered by addListener(g�el). The
reason is that Java deserialization generates a new object for every object which is
passed remotely.

The global reference polymorphism as defined in Section 1.3 above is another
useful property which is motivated by the scenario given in the Maestro example
above. This property is not free of implementation issues. As we implement this
property by subclassing the master object class, the first issue is which one must
implement all methods inherited from the master class, from that only a small
subset may be required by the user. Another issue may pop up when a global
reference object is instantiated, as its initializer calls one of its master object con-
structors. The latter may execute some undesirable code. A third issue may arise
when a global reference object is deserialized (when passed by copy to another
JVM). If the first nonserializable class in the class hierarchy of the master class does
not contain a constructor with no parameters, an exception will be raised. Due
to these three issues we also provide an option by which global references only
implement a specified interface.

Observe that global references are generated during runtime. This may be forbidden
in some applications, e.g., browsers. In such cases, class generation is transparently
delegated to another host which runs ClassBroker and has no such limitation. The
class is then loaded by the ClassBroker runtime class loader or by the applet class
loader.

To summarize, the global references of the ClassBroker for Java are implicit,
symmetric, multiple typed, unique (up to the global reference type), and smart (in
the sense that they can be set to translate a local reference into a global one). As

1232 HAR'EL AND ROSBERG

a result, the global references and reference assignment distinctions from Section 1.2
are substantially narrowed.

3.2. Class and Resource Loading

As global reference classes are generated on-the-fly and in a distributed environ-
ment, global references, as well as other objects, are passed from one JVM to
another; their classes must be loaded into the receiving JVM. Besides classes, other
remote resources such as images and files may be needed.

To resemble a SSI transparent class loader and address potential security manager
denial, the loader we implemented satisfies the following properties:

1. Joint-classpath: All classes and resources in every JVM which participates
in a distributed program should be accessible to all JVMs.

2. Application-defined-class resolution: A class which has been defined by an
application class loader in one JVM should be made available to all other JVMs.

3. Transparent delegation to Application ClassLoader: If a class loader construc-
tion is denied, class loading should transparently be delegated to the underlying class
loader (if it exits).

4. Class prefetching: In cases where an array of objects are passed in a remote
call, its element Class object should be prefetched.

5. Resource loading: Resource files which are referred from any object should
be made available to any JVM in the distributed program.

These properties represent an environment with a fully shared set of classes and
resources. In distributed environments, however, there are cases where class sharing
should be limited to a subset of JVMs, allowing different sessions to use different
versions or implementations of the same class. ClassBroker supports both options
and lets the user select between the two.

To summarize, the distributed class and resource loader above substantially
narrows the class loading distinction from Section 1.2.

3.3. Thread Context Preservation in Recursive Remote Callbacks

To eliminate the callback thread context distinction from Section 1.2, the
ClassBroker is using a patent pending mechanism which is built into the remote
invoker layer. It ensures that every subsequent remote callback generated from a
remote call before its return is switched to the thread and priority of the originating
remote call. This feature liberates the applications from taking care of deadlocks
which do not occur in local programs, hence making remote calls more similar to
local calls.

3.4. Distributed Garbage Collection

One of Java's key features is its transparent garbage collection which frees the
application from managing its memory. To narrow the garbage collection distinc-
tion, an SSI framework for distributed programs should also free the distributed

1233JAVA CLASS BROKER

application from managing its distributed memory. ClassBroker implements a
transparent distributed garbage collection using a weighted-count algorithm with a
dynamic total weight value. Note that a dynamic total weight value is needed to
cope with the situation where the number of global reference copies exceeds its
initial setting. A disposal of a global reference object is caught in its finalize()
method. To make sure that finalize() is always called, ClassBroker runtime forces
the runFinalizersOnExit(true) option.

3.5. Remote Exceptions and Their Stack Traces

Exception and Error objects are used to indicate that exceptional situations have
occurred. Typically, these objects are freshly created in the context of the excep-
tional situation to include relevant information such as stack trace data. The stack
trace contains a snapshot of the execution stack of its thread at the time it was
created and is being filled by a native function into a native data structure. Excep-
tions can be thrown by the JVM or by the Java throw statement.

When an exception is thrown in a local program, it percolates up the method
calling hierarchy until caught by a Java catch statement. If it is not caught, the
thread which encounters it is terminated. In a distributed program, a remote
method call may be initiated in one JVM, and the exception may occur in another.
Our SSI exception handling delegates the exception, along with its stack trace, back
to the thread which has initiated the remote call and rethrows it there. Moreover,
the Exception type we throw is assignable to the type of the original exception, and
its printStackTrace() method prints the original stack trace data. To implement
these properties, ClassBroker generates on-the-fly subclasses of such exceptions,
whose printStackTrace() method prints the remote stack trace data. This feature
narrows the exception handling distinction from Section 1.2.

3.6. Remote Static Method Invocation

As stated above, the main objective of the ClassBroker is to provide a distributed
framework which is as close as possible to a SSI framework. This also implies that
if an object can be created locally, it should also be possible to create it remotely
and to get a global reference to it. The following example demonstrates that smart
global references is not sufficient. Consider the following version of class Private-
Manager which is defined above:

public class PrivateManager1 [
private PrivateManager1 (String name, Long commission) [...]
public static PrimaDona getPrimaDona (Double dollars) [....]

]

PrivateManager1 has a private constructor and a static method to create PrimaDona
objects. Therefore, the only way to remotely create a PrimaDona object is to support
a remote call to a static method. To do so, ClassBroker provides the following two
instance methods:

1234 HAR'EL AND ROSBERG

ClassBroker.invokeStatic(String method, String class, Object[] params);

ClassBroker.invokeStaticReturnRemote(String method, String class,

Object[] params, String returnType);

The first API returns the object by copy and the second by (global) reference.

3.7. Most Specific Constructors and Methods

In local programs, calls to methods and constructors are done by specifying
the method or the constructor name along with the parameters. Since the Java
language supports polymorphism, this could result in ambiguity, since more than
one method or constructor may meet the specified method and parameter types.
In local programs, such ambiguity can be resolved during compilation by casting
the parameters to the required types. In our distributed framework where global
references are created during runtime, remote object creation and remote static
method invocation ambiguity are resolved by providing optional APIs where the
parameter types can be specified.

3.8. Nevertheless, Still Not SSI

In conclusion, ClassBroker eliminates six of the nine distinctions from Section 1.2.
Three distinctions still remain: field referencing, class instantiation, and locking enfor-
cement. The first two cannot be eliminated due to our portable framework requirement
defined in Section 1.3, and the third one could be too costly performancewise. In
this respect, our ClassBroker framework is not a fully SSI framework, but comes
quite close.

3.9. Other Features

Very often, distributed programs may consist of applets running inside the Java
security sandbox model. In Sections 3.1 and 3.2, we already discussed the restric-
tions imposed by the sandbox security model on two basic features, class generation
and class loading. We also described the solutions taken by ClassBroker. There are
other crucial methods which must be used by a framework implementation which
are subject to denial by the applet SecurityManager or may throw exceptions if
called more than once, e.g., method setSocketFactory(...), of class ServerSocket and
method setURLStreamHandlerFactory(...) of class URL, which are called by the
browser running the applet. An example of a function which a framework may wish
to use and be denied by the applet SecurityManager is to open a socket to a host
different than the codebase. In general, security exceptions can be avoided by using
signed applets. However, since different browsers have different models for security
privileges, this solution is not portable. Therefore, it is better to provide portable
bypasses whenever possible. ClassBroker provides bypasses for setting secure
sockets and for message rerouting to hosts other than the codebase.

A distributed framework also needs a mechanism to restrict remote access from
other JVMs. ClassBroker runtime consults with a preset RemoteAccessController
object before any object instantiation or method (static and instance) invocation

1235JAVA CLASS BROKER

which has been initiated from a remote JVM. The RemoteAccessController class is
an application implementation which enforces the remote access policy. A Remote
AccessController object can be reset at any time. It can be set in a global context,
namely, applied to all connecting JVMs, and can be set on a connection basis. The
latter allows application of different policies to different connecting JVMs.

4. STATUS, IMPLEMENTATION EXPERIENCE, AND CONCLUSION

ClassBroker has a mature and complete implementation which can be down-
loaded from http:��www.alphaworks.ibm.com�tech�jcbroker. It is part of the Java
server platform shipped with the IBM AS�400 V4R5 operating system, and it is
used as the distributed framework for a forthcoming IBM tool to manage AIX�6000
systems.

In our implementation we emphasized three major elements: bytecode size,
performance, and being able to run as an unsigned applet. We restricted ourselves
to an uncompressed bytecode of 200 Kbytes which can comfortably fit into a thin
client (network) desktop. We achieved a size of about 160 Kbytes for applications
and about 100 Kbytes for applets. This requirement forced very careful design and
development of our own runtime compiler to generate global reference classes.
Existing compilers were too large.

Fast generation of global reference classes was another requirement which
convinced us to implement our own compiler, since existing ones either are too
slow or are implemented in native code. The speed of our class generator compiler
is comparable to that of the Symantec native compiler. Performance and thread
context preservation upon recursive callbacks were the two main reasons for
implementing our own transport layer for remote method invocation. An earlier
attempt to build it on top of Java's RMI was not sufficiently fast. Another reason
for using our transport layer is to have better control of how sockets are being
opened and closed. This has a crucial impact on performance (especially for secure
sockets) and on security violations when running as an applet.

The size, efficiency, complexity, and usability of existing frameworks for distri-
buted programs have motivated us to specify and implement an alternative one.
The beacons we have followed were openness and simplicity as expressed by the
SSI concept. The ultimate and final criterion for every design and implementation
decision was ``How close would the distributed program be to its local version?''
Secondary considerations, but still important, were portability, bytecode size, and
performance.

The wide use of the Java language and Java-enabled Web browsers led us to
select Java as the only supported programming language. This is not much of a
restriction as even in enterprise environments, Java is taking the role of being a
mediating layer to native applications.

ACKNOWLEDGMENTS

The authors thank their colleagues, Y. Aridor, O. Biran, M. Factor, and E. Farchi for valuable
feedback during the design and testing of the ClassBroker framework.

1236 HAR'EL AND ROSBERG

REFERENCES

[AFT99] Y. Aridor, M. Factor, and A. Teperman, cJVM: A single image system of a JVM on a
cluster, in ``Proceedings of '99 IEEE International Conference on Parallel Processing,
ICPP'99,'' to appear.

[CKV98] D. Caromel, W. Klauser, and J. Vayssiere, ``Towards Seamless Computing and
Metacomputing in Java,'' Technical Report, INRIA, 1998, available at http:��www.inria.
fr�sloop�javall.

[JCL98] M. Chan, R. Lee, and D. Kramer, ``The Java Class Libraries,'' 2nd ed., Vols. 1 and 2,
Addison�Wesley, Reading, MA, 1998.

[JLS96] J. Gosling, B. Joy, and G. Steele, ``The Java Language Specification,'' Addison�Wesley,
Reading, MA, 1996.

[KBW] L. V. Kale, M. Bhandarkar, and T. Wilmarth, ``Design and Implementation of Parallel
Java with Global Object Space,'' Technical Report, Department of Computer Science,
University of Illinois, Urbana, IL.

[LaPa97] P. Launay and J.-L. Pazat, ``A Framework for Parallel Programming in Java,'' Technical
Report 1154 IRISA, December 1997.

[MMH98] M. MacBeth, K. McGuigan, and P. Halcher, Executing Java threads in parallel in a
distributed memory environment, in ``IBM Center of Advanced Studies Conference,''
Canada, November 1998.

[PhZe97] M. Philippsen and M. Zenger, JavaParty��Transparent remote objects in Java,
Concurrency: Practice Exper. 11, No. 9 (1997), 1125�1142.

[RMI] http:��www.javasoft.com�rmi.

[Vo] http:��www.objectspace.com�products�prodVoyager.asp.

[YuCo97] A. Yu and W. Cox, Java�DSM, A platform for heterogeneous computing, in ``JCM 1997
Workshop on Java for Science and Engineering Computation,'' June 1997.

1237JAVA CLASS BROKER

	1. INTRODUCTION AND PRELIMINARIES
	2. THE CLASS BROKER FOR JAVA
	3. CLASS BROKER CORE FEATURES
	4. STATUS, IMPLEMENTATION EXPERIENCE, AND CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

