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Abstract

An optimal circuit allocation problem for all-optical circuit-switched backbone networks with

average packet delay cost criterion is considered. Multiple classes of traffic flows arrive at the network

edge routers, where they can be queued until an end-to-end optical circuit can be allocated. Assuming

fluid traffic and circuit allocation of fixed periods, a lower bound on the optimal average packet delay

is derived and the cost of two allocation policies are exactly evaluated. The cost of both policies are

demonstrated for a variety of deterministic and random networks and are compared with the lower

bound.
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I. I NTRODUCTION

Circuit switching is a classical network architecture used for real time applications such as

telephony, which is also considered attractive for all-optical backbone networks (AON) [3] [14]

[15]. Circuit switching in general, provides guaranteed bandwidth and low delay. Optical circuit

switching also avoids the electronics associated with high-speed queuing and scheduling hardware

at the core routers. Understanding the potential merit of circuit switching for optical networks

is becoming of utmost important in light of hybrid switching methods [7] [18] comprising of

optical burst switching (OBS) [2] and optical circuit switching (OCS) [6] [8].
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AON comprises buffered edge routers at the ingress/egress network nodes and bufferless

core routers inside the network. Edge routers multiplex/demultiplex end user traffic flows, e.g.,

SONET [1], and due to bufferless core routers apply a reservation protocol before transmitting

buffered data into the network.

With circuit switching, a two-way reservation protocol is used, by which circuits are allocated

for a period of time allowing lossless traffic flows from a subset of sources to their correspond-

ing destinations. Using wavelength division multiplexing (WDM), an optical circuit comprises

switching resources and a sequence of wavelengths along a multiple-hop route conforming the

wavelength conversion rules [17]. An optical circuit corresponds to a unidirectional lightpath

between a source and destination pair of edge routers.

A fundamental control problem in a circuit-switched AON is to find an adaptive policy based

on the buffer occupancies to allocate circuits (lightpaths) so as to minimize the average packet

delay. Note that with circuit switching, queuing delay is the main concern since by proper edge

buffer sizing, packet loss diminishes.

This paper derives a lower bound to the optimal long-run average packet delay and evalu-

ates the performance of two heuristic policies. Previous studies have analyzed circuit-switched

networks with respect to blocking probability, or equivalently carried traffic. The study in [10]

concerns with routing data or voice in a classical circuit-switched network and the studies in

[13] [15] concern withRouting and Wavelength Assignment (RWA)in optical circuit-switched

networks. The blocking probabilities have been evaluated there by using reduced-load fixed point

approximation. In [4] [15], carried traffic maximization has been formulated as an integer linear

program (ILP). Although ILP is in NP-hard, its solution can be derived off-line for each traffic

demand, after which it can be applied on-line using a lookup table.

A framework for evaluating packet delay in AON with arbitrary adaptive RWA algorithms

and two-way reservation policies is derived in a related study [16]. The framework there is

applicable to any stationary RWA policy but not to policies that multiplex circuit subsets over

the time domain, i.e.,TDM policies. Such policies are used in Subsection V-C to approximate

the optimal policy.

In Section II, the system model is defined and the optimization problem is formulated. In

Section III, a sufficient and necessary condition for the existence of a finite valued optimal

allocation policy is derived. The optimal cost is bounded from below in Section IV and two
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allocation policies are proposed and analyzed in Section V. Their costs and the lower bound

in a variety of deterministic and random networks are demonstrated in Section VI and a brief

conclusion is given in Section VII.

II. M ODEL FORMULATION

A traffic flow is characterized by a source-destination pair of edge routers, QoS class and

other external classifications. Packets that cannot be transmitted immediately are queued in an

unbounded logical buffer associated with that stream. Buffers are labeled byj, where1 ≤ j ≤ J .

A circuit is a unidirectional lightpath connecting a source-destination pair of edge routers

capable of uninterruptedly transmittingC b/s for an integral period ofT seconds. A circuit is

setup by selecting a feasible path and reserving a feasible sequence of wavelengths and resources

along that path. An allocated circuit drains its corresponding buffer at a maximum rate ofC b/s.

After T seconds, the circuit can be teared down.

Every T seconds, a set of circuits, referred to as atransmission set, is selected and allocated

to their corresponding buffers using an arbitrary selection algorithm. The transmission set can

be selected as a function of all logical queue lengths.

Two circuits arewavelength-disjoint, if their wavelengths in each fiber are different. Allocating

a transmission set containing non wavelength-disjoint circuits is not optimal since part of the

traffic is lost. Thus, by excluding one of the conflicting circuits, carried traffic is increased and

results in a lower value of the cost function. The relation between the carried traffic and the cost

function is made clear in Section III. Atransmission set is maximal, if it cannot be extended

with another wavelength-disjoint circuit. Allocating a non-maximal transmission set is also not

optimal since by extending it to a maximal set, traffic is increased.

Circuit allocation comprises two tasks: (i) Specification of the maximal transmission sets;

and (ii) Selection of a maximal transmission set everyT seconds. The first task is the classical

combinatorial problem known asdisjoint paths problems[11], which is in NP-hard [9]. Task

(i) is pursued only once by representing the network topology as a graph, and then finding all

maximal transmission sets. It is complex and heuristic shortcuts can be done during the graph

representation part, some of which are to constrain the lightpath hop-count and to limit the

number of lightpaths connecting each source-destination pair. Disjoint paths problems have been

extensively studied in [9] and in references there. This paper focuses on task (ii), where a given
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group of maximal transmission sets are adaptively scheduled over the time domain.

Since optical links have a capacity of 1G-1T b/s and optical switching is on-the-fly, fluid flows

is a conventional way to specify user traffic in core AON. LetAj be the integral valued rate of

b/s arriving at the logical bufferj.

For scalability reduction, the circuit period and rates are normalized as follows without losing

generality. Time scale is measured in circuit periods, i.e.,T = 1 is assumed and transmission

and arrival rates are specified in circuit periods. Furthermore, rates are normalized by dividing

them with their largest common (integral) denominator. Normalized rates are referred to as rates

in B-bits. After normalization,K and
{
Aj , 1 ≤ j ≤ J

}
denote the lightpath transmission and

arrival rates, respectively, in B-bits per circuit period. That is, time units are specified in circuit

periods and data units are specified in B-bits.

The circuit allocation problem is formulated by the following Markov Decision Process (MDP).

Let Ji ⊆ {1, 2, . . . , J}, 1 ≤ i ≤ N , be the family of all maximal transmission sets;Xj(n) be

the queue length (in B-bits) of bufferj at stepn; andδi(n) be 1 or 0, depending on whether or

not transmission seti is selected at stepn, respectively. Note that the number of traffic sources

is J and the number of maximal transmission set isN .

Without losing optimality, only policies that select exactly one maximal transmission set at

each step can be considered. Otherwise, part of the carried traffic is lost. Thus,
∑N

i=1 δi(n) = 1,

for everyn. By the model definition, the evolution ofXj(n), for everyj, is given by

Xj(n + 1) =

[
Xj(n) + Aj −K

N∑
i=1

δi(n)I{j∈Ji}

]+

, (1)

where[y]+ = max{0, y} andI{j∈Ji} is 1 or 0 depending on whether or notj ∈ Ji, respectively.

That is,

Xj(n + 1) =





[Xj(n) + Aj −K]+, if j is selected,

Xj(n) + Aj, Otherwise.
(2)

The immediate costat stepn, C(n), is defined as the time-average of all queue lengths from the

beginning of stepn until the beginning of stepn + 1. That is, if transmission setJi is selected

at stepn (i.e., δi(n) = 1), then

C(n) =
∑

j∈Ji

1∫
t=0

[
Xj(n) + Ajt−Kt

]+
dt +

∑
j 6∈Ji

1∫
t=0

(Xj(n) + Ajt)dt

∑
j∈Ji

(
[min{K−Aj ,Xj(n)}]2

2(K−Aj)
+ [Xj(n)− (K − Aj)]

+
)

+
∑

j 6∈Ji

(
Xj(n) +

Aj

2

)
.

(3)
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The last equality follows from the fact that arrival and service rates are fixed and the step length

is normalized to one.

A circuit allocation policyπ selects a transmission set at every circuit allocation stepn.

Generally,π may take random selections depending on the stepn and the history of queue

lengths. For every policyπ and every initial statex (i.e., X(0) = x), let Vn(π, x) be the total

expected cost during the firstn steps. The long-run average cost of policyπ is defined by

V (π, x) = lim sup
n→∞

Vn(π, x)

n
. (4)

For every stationary policyπ whose underlying Markov process is ergodic,V (π, x) is the

expected total queue lengths under stationary conditions. Furthermore, if the lengths of the

packets arriving at bufferj are independent and identically distributed random variables with

meanMj, Little’s lemma implies thatV (π, x)/
∑J

j=1 Mj is the expected delay of an arbitrary

packet under stationary conditions.

A policy π∗ is optimal, if it attains thevalue functioninfπ V (π, x) for every initial statex.

A necessary and sufficient condition for a finite value function is derived in the next section.

Also, since the mean packet lengths{Mj} are given in the outset, the same policy minimizes

both, the long-run total average queue lengths and the long-run average packet delay.

It will become apparent in Section IV that the alternative ‘on-off’ arrival process (rather than

the current ‘always-on’) would not change the lower bound on the value function. Moreover,

it could only marginally effect the cost of TDM policies analyzed in Section V since the

accumulated arrivals between two consecutive circuit allocations is dominated by the average

arrival rate.

III. A C ONDITION FOR A FINITE VALUE FUNCTION

Since bits arrive at constant rates independently of the allocation policy, the value function

in (4) is attained by a policy maximizing the long-run average of the carried traffic rate.

Consequently, as explained in Section II, attention can be restricted to a policy that for at

each stepn selects exactly one maximal transmission set. Otherwise the policy can be improved

by another policy with a larger carried traffic rate.

The following theorem provides a necessary and sufficient condition for the existence of a

finite value function.
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Theorem 1:The value function is finite if and only if there is a set of proportionsαi, 1 ≤
i ≤ N , such that

N∑
i=1

αi ≤ 1 and ρj
def
=

∑
i:j∈Ji

αi ≥ Aj

K
, ∀ 1 ≤ j ≤ J. (5)

Proof: For sufficiency it will be shown that (5) implies a policyπ0 with a finite long-run

average total queue length.

SinceK and{Aj} are integral numbers,{Aj/K} are rationales. Since rationales are dense in

the reals, (5) implies the existence of rationales{ρ̃j, ρ̃j ≤ ρj}, satisfying (5). Sincẽρj ≤ ρj, ∀ j,

there are also rationales{α̃i}N
i=1 satisfying (5).

Policy π0 is defined as follows. Letm be a common denominator of{α̃i}. For the firstm

steps,π0 does nothing. For every subsequent cycle ofm steps,π0 selects each transmission set

Ji, for mi = mα̃i consecutive steps according to the set label order. Thus, in every cycle ofm

steps each bufferj transmits duringmρ̃j steps.

For any givenX(0) = x, X(m) under policyπ0 is X(0)+(mA1,mA2, . . . mAJ). Combined

with (5), it follows that{X(lm) | l ≥ 1} is a non-increasing (component-wise) sequence and

straightforward calculation reveals that the long-run average of the total queue length is finite.

The necessity of condition (5) is shown by a contradiction argument. Suppose that the value

function is finite and is attained by policyπ∗. Let αi(π
∗) be the long-run proportion that

transmission setJi is selected by policyπ∗ and defineρj(π
∗) =

∑
i:j∈Ji

αi(π
∗), 1 ≤ j ≤ J .

Suppose in contradiction that there is a bufferj0 for which

ρj0(π
∗) < Aj0/K − ε, for some ε > 0. (6)

Let nj0(n, π∗) be the number of times policyπ∗ allocates a circuit to bufferj0 during the first

n steps. Since the long-run proportions{αi(π
∗)} exist, it follows by the evolution in (2) that for

sufficiently largen,

nj0(n, π∗)/n < ρj0(π
∗) + ε/2. (7)

Thus, by (6)–(7), for every initial statex and every stepn,

Xj0(n) ≥ Xj0(0) + nAj0 − nj0(n, π∗)K =
(

Xj0
(0)

n
+ Aj0 − nj0

(n,π∗)
n

K
)

n

≥ (
Aj0 − ρj0(π

∗)K − εK
2

)
n >

(
εK − εK

2

)
n = nεK

2
.

(8)

By (8), limn→∞ Xj0(n) = ∞, which is in contradiction with the finiteness ofV (π, x).

January 12, 2006 DRAFT



7

Note that the necessity of (5) implies that attention can be restricted to policiesπ satisfying

ρj(π) ≥ Aj

K
, for every 1 ≤ j ≤ J . (9)

These policies are referred to asfeasible policies.

IV. A L OWER BOUND TO THE VALUE FUNCTION

Finding a closed form representation of the optimal policy is intractable. Therefore, the value

function is bounded by a lower bound which is used as a reference for heuristic policies.

Every feasible policy,π, is associated with a feasible proportion vector in the setP = {α =

(α1, α2, . . . , αN)}, where eachα satisfies (5).

A. Constrained lower bounds on individual queues

For feasible allocation proportionρj (determined byα ∈ P), let Π(ρj) be the set of feasible

policies π with ρj(π) = ρj. First, the long-run average queue length in bufferj is bounded

below for all π ∈ Π(ρj).

For every feasible policyπ, (2) implies that the long-run average queue length in bufferj,

Eπ (Xj), can be expressed by the following functionSj
Y (D). For every bufferj and non-negative

integersY andD, define

Sj
Y (D) =

Y · (Y − [Y + Aj −K]+)

2 max{Y, K − Aj} + D · [Y + Aj −K]+ +
Aj(D − 1)2

2
, (10)

where Y represents the queue length at the beginning of a circuit allocation period andD

represents the number of circuit periods until the next allocation (excluding the current allocation

period but including the next allocation period). Note that givenY andD, Sj
Y (D) is the integral

of the queue length in bufferj between two consecutive allocations.

Also, every stationaryπ ∈ Π(ρj) induces a deterministic sequence{(Dt, Y (t)) : t = 1, 2, . . .},
whereDt is the number of circuit periods between allocationt (excluded) and allocationt + 1

(included) andY (t) is the queue length in bufferj when policyπ allocates thet-th circuit.

Sinceρj is the long run proportion of circuits allocated to bufferj, it follows that

lim
T→∞

1

T

T∑
t=1

Dt =
1

ρj

. (11)

By (2) and (11),
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Eπ (Xj) =

lim
T→∞

T∑
t=1

Sj
Y (t)(Dt)

lim
T→∞

T∑
t=1

Dt

= ρj lim
T→∞

1

T

T∑
t=1

Sj
Y (t)(Dt). (12)

By (10), the r.h.s of (12) is convex in{Dt}. Thus, recalling that{(Dt, Y (t))} is a deterministic

sequence, Jensen’s inequality, (11) and (12) imply

lim
T→∞

1

T

T∑
t=1

Sj
Y (t)(Dt) ≥ lim

T→∞
1

T

T∑
t=1

Sj
Y (t)

( 1

ρj

)
= Sj

Aj(1−ρj)/ρj
(1/ρj), (13)

where the last equality follows from the fact thatAj(1 − ρj)/ρj is the stationary queue length

at a circuit allocation instant given a constant inter-allocation period of length1/ρj.

Combing (10), (12) and (14) yields

Eπ (Xj) ≥ (1− ρj)
2AjK

2ρj(K − Aj)
. (14)

B. A convex program

SinceV (π, x) =
∑J

j=1 Eπ (Xj | Xj(0) = xj), (14) implies that for every feasible(ρ1, ρ2, . . . , ρJ),

V (π, x) ≥
J∑

j=1

(1− ρj)
2AjK

2ρj(K − Aj)
, ∀ π ∈

J⋂
j=1

Π(ρj) . (15)

Moreover, every feasibleπ resides in some set
⋂J

j=1 Π(ρj), where the proportions{ρj} satisfy

condition (5). Thus, the value function is bounded below by the solution to

min
ρ1,...,ρJ

J∑
j=1

(1− ρj)
2AjK

2ρj(K − Aj)
(16)

subject to : ρj =
∑

i:j∈Ji

αi ≥ Aj

K
, 1 ≤ j ≤ J,

N∑
i=1

αi = 1, αi ≥ 0, 1 ≤ i ≤ N.
(17)

By replacing everyρj in the objective function (16) with its definition in (17), the convex program

translates into

min
α1,...,αN

J∑
j=1

AjK(1−∑
i:j∈Ji

αi)
2

2(K − Aj)
∑

i:j∈Ji
αi

(18)

subject to :
N∑

i=1

αi = 1, αi ≥ 0 , 1 ≤ i ≤ N,

∑
i:j∈Ji

αi ≥ Aj

K
, 1 ≤ j ≤ J.

(19)
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The convex program (18)–(19) has a unique minimum that can be derived by standard

algorithms, e.g., gradient projection, active set and primal method [12]. Mathematical software

tools are also available, one of which is applied in Section VI. The solution of (18)–(19) yields

a lower bound and ideal allocation proportions for the sets{Ji}. Also, the ideal proportions

and uniform inter-allocation periods providing the lower bound may serve as a beacon to which

network topology and circuit allocation algorithms are aiming at.

Two heuristic policies attempting to approximate the ideal proportions and to distribute the

allocation periods of each transmission set as uniform as possible are defined next.

V. TDM POLICIES

For symmetric networks and uniform traffic, the lower bound derived in Section IV is attained

by the round-robin allocation policy, where circuits are allocated to transmission sets in a cyclic

order. For most of the other cases, the lower bound cannot be attained since uniform inter-circuit-

allocation periods across all buffers is infeasible. In this section, two policies approximating

uniform inter-allocations are analyzed. One policy, which is referred to asLongest Time to

Empty Queue (LTEQ), allocates circuits to transmission sets based on a state-dependent priority

index. Another policy allocates circuits to transmission sets in a weighted round-robin fashion

according to an order determined by thegolden ratio.

A. The LTEQ policy

LTEQ policy is motivated by simplicity and by many empirical observations indicating that

short term optimization usually works well. By (4), the naive one-step optimization rule (myopic)

is to allocate the circuits to the transmission set which maximizes the transmission rate at the

next step. That is, at every statex, select transmission set

arg max
{Ji}

∑
j∈Ji

min{xj + Aj, K}.

Since transmission rate is insensitive to large queue lengths, this policy favors large transmis-

sion sets which may result in starvation. A more sensible policy is to select the transmission set

with the longest time to empty all its queues given that it is being served without interruption.

Specifically, given that transmission setJi is assigned consecutive circuits at statex, the time

to empty all its queues ist(x,Ji) = maxj∈Ji
xj/(K − Aj).

Thus,at every statex, LTEQ selects the setJ (x) with lowest label which attains
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arg max
{Ji}

t(x,Ji).

Note that for arrival streams with fixed rates, the queue lengths with policyLTEQ evolves

deterministically. Thus, for every given initial state at time0, the circuit periods allocated to

each transmission set,Ji, are completely determined at time0. Namely,LTEQ is a TDM policy.

B. The golden ratio policy

The Golden Ratio (GR)policy is a generalization of the symmetric round-robin policy first

presented in [5] for a multiple access channel.

Let α∗ be the ideal circuit allocation proportions obtained from the solution of (18)–(19).

Since the lower bound is attained when the inter-circuit-allocation periods for every bufferj is

uniform, one wish to approximate this uniformity without wasting circuit periods. The best known

approximation is the following rule based on the golden ratio (defined byφ−1 = (
√

5− 1)/2).

To attain the optimal allocation proportions,α∗, with circuit period units, integersτ and

{τi | 1 ≤ i ≤ N} are fixed first so as to satisfyτi/τ ≈ α∗i , ∀ i, and
∑N

i=1 τi = τ . (Fibonacci

numbers yield the best results [5]). Then, the followingGR rule is used to order between

transmission set allocations within each cycle ofτ circuit periods.

Place theτ fractionsaj = jφ−1 − bjφ−1c, j = 0, 1, . . . , τ − 1, on a circle with contour one.

Then associate the firstτ1 fractions, {aj, j = 1, . . . , τ1}, with transmission set1, the nextτ2

fractions,{aj, j = τ1 + 1, . . . , τ2}, with transmission set2, etc. The resulting order determines

the GR allocation order.

C. The long-run average cost of TDM policies

A finite numerical procedure is derived next for exact evaluation of the cost of any TDM

policy with a finite cycle. A TDM policy with a finite cycle is specified by a cycle lengthτ

and N integer-valued inter-allocation times,Di = (D1
i , D

2
i , . . . , D

τi
i ) between two consecutive

allocations to transmission setJi satisfying
∑τi

m=1 Dm
i = τ , 1 ≤ i ≤ N .

Every set of inter-allocation times to transmission sets,{Di | 1 ≤ i ≤ N}, induces a set

of inter-allocation times to buffers. Let{dj | 1 ≤ j ≤ J} be the induced set, wheredj =

(d1
j , d

2
j , . . . , d

tj
j ); dl

j is the l-th inter-allocation time to bufferj; and tj is the number of inter-

allocation times to bufferj in each cycle.
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The evaluation of the total average queue lengths is based on two properties: (i)K and

{Aj | 1 ≤ j ≤ J} are integers; and (ii) For every TDM policy, each queue length evolves

independently of the others.

The non-transient states of a TDM policy with a cycle of lengthτ and long-run buffer allocation

proportions satisfying condition (5) are contained by the interval[0, τAj]. Moreover, the feasible

states assume only rational valuesn/m, wherem is the common denominator of the integers

K, Aj, 1 ≤ j ≤ J . Thus, each process{Xj(n) | n ≥ 1} assumes only a finite number of values

and so is the multi-dimensional process{X(n) | n ≥ 1}. Combining with the fact that the

evolution of {Xj(n) | n ≥ 1} is deterministic, the exact long-run average total queue lengths

can be computed by the following finite and very fast procedure.

For each TDM policy, the process{X(n) | n ≥ 1} is examined at the beginning of circuit

periodsn = k · τ , wherek = 0, 1, 2, . . ., and a recurrent state is identified. The existence of a

recurrent state is guaranteed by the fact that the set of feasible states under each policy is finite

and the decisions are non-randomized and stationary.

Let n0 andn1 be the first two circuit periods where a state recurs under policyπ ∈ {GR,LTEQ}.
From (2) and the mean ergodic theorem,

V (π, x) =
J∑

j=1

E
(
Xj | Xj(0) = xj

)
= 1

n1−n0

n1−1∑
n=n0

N∑
i=1

δi(π, n)

·
(

∑
j∈Ji

Sj
Xj(n)(1) +

∑
j 6∈Ji

(
Xj(n) + Aj/2

)
)

,

(20)

whereSj
Xj(n)(1) is given by (10) andδi(π, n) is 1 or 0, depending on whether or not trans-

mission seti is selected by policyπ at stepn, respectively.

The computational procedure in (20) is applied in the next section for evaluating the costs

of the LTEQ and GR policies. Observe that this procedure is exact andis not evaluation by

simulation, although it emulates the underlying deterministic process.

VI. N UMERICAL EXAMPLES

The quality of the lower bound and the performance of theGR and theLTEQ policies

are demonstrated in deterministic and random networks. Note that the network topology and

the algorithm by which the maximal transmission sets are derived are immaterial - only the

transmission set composition.
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In all the cases, the number of buffers is100 and the number of transmission sets is10 and the

cases are classified according to the buffer distribution over the transmission sets. For symmetric

cases, where all transmission sets comprise the same number of buffers and the number of

transmission sets containing any given buffer is the same for every buffer, it is straightforward

to prove that both policies attain the lower bound and therefore are optimal. The cases below

concern with versatile asymmetric networks.

Asymmetric networks are characterized by two attributes: (i) the distribution of the transmis-

sion set size; and (ii) the distribution of the number of transmission sets containing a given

buffer. In addition, buffer can be distributed deterministically or randomly. A random buffer

distribution reflects an average performance measure over many networks having the same mean

characteristics with respect to attributes (i) and (ii). The specific numerical examples are as

follows: (D1) Deterministic buffer distribution where attribute (i) is variable and attribute (ii) is

fixed; (D2) Deterministic buffer distribution where attribute (i) and (ii) are both variables; (R1)

Random buffer distribution where attribute (i) and (ii) are both variables so as to form a random

network with symmetric expected values; and (R2) A random asymmetric network.
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Fig. 1. Case D1.
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Fig. 2. Case D2.

Typical lower bounds and the costs of both policies for symmetric offered load per buffer

ranging from light to heavy until network saturation are depicted in Figures 1–4. The conclusion

below are based on many other cases not presented here, where it has been also observed that

relative measures do not change significantly when offered loads are asymmetric. For the random
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networks, Figures 3–4, the performance measures are averaged over10 independent experiments.

One observation is thatLTEQ outperformsGR in most cases. There are few cases, e.g., case

D2, whereGR is significantly better thanLTEQ across all loads. In other cases (not presented

here), dominance is alternating when load changes.

Another observation is that for some cases (D2 and R1) the lower bound is not sufficiently

tight. For other cases (D1 R2), the lower bound is a very good indicator for the policy goodness.

The ratio between the lower bound and theLTEQ performance is greater than95% in case D1,

and greater than89% in case R2. In other cases the ratio is lower: in case D2, the ratio is around

80% and in case R1, the ratio is around78%.

VII. C ONCLUSIONS

The adaptive circuit allocation in optical circuit-switched networks has been formulated as a

Markov decision process from which a lower bound to the value function has been derived. Due

to problem complexity, two TDM heuristic policies,LTEQ andGR, which are well-known rules

in similar queueing network contexts, are evaluated and compared with the lower bound in a

variety of deterministic and random networks.

It has been observed thatLTEQ outperformsGR in most cases and that the lower bound is

not always tight. The best betweenLTEQ andGR depends on the network topology, routes and

traffic. Thus, the practical conclusion of this study is that for a network in hand both policies

should be evaluated using the theoretical results of Sections IV and V; then the best between
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the two candidates should be selected. If the lower bound turns out to be tight, no further

investigation is needed.

Note that the evaluation method derived in Section V is extremely fast compared with sim-

ulation. Furthermore, due to the vast domain of feasible policies, simulations do not present a

practical option for searching the optimal policy.
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